KaTeX Math Examples and Tips

KaTeX renders mathematical notation beautifully in web pages. This guide covers common patterns, syntax, and tips for writing mathematical expressions.

Use Case

Use KaTeX when you need to:

  • Display mathematical formulas and equations
  • Show scientific notation
  • Write technical documentation with math
  • Create educational content with equations
  • Document algorithms with mathematical foundations

Basic Syntax

Inline Math

Use single dollar signs for inline math: $x = y + z$ renders as $x = y + z$

Display Math

Use double dollar signs for display math (centered, on its own line):

1$$
2E = mc^2
3$$

Renders as:

$$ E = mc^2 $$

Common Mathematical Expressions

Fractions

1$$
2\frac{a}{b} \quad \frac{numerator}{denominator} \quad \frac{x^2 + 1}{x - 1}
3$$

$$ \frac{a}{b} \quad \frac{numerator}{denominator} \quad \frac{x^2 + 1}{x - 1} $$

Superscripts and Subscripts

1$$
2x^2 \quad x^{n+1} \quad x_i \quad x_{i+1} \quad x^{y^z}
3$$

$$ x^2 \quad x^{n+1} \quad x_i \quad x_{i+1} \quad x^{y^z} $$

Roots

1$$
2\sqrt{x} \quad \sqrt[n]{x} \quad \sqrt{x^2 + y^2}
3$$

$$ \sqrt{x} \quad \sqrt[n]{x} \quad \sqrt{x^2 + y^2} $$

Sums and Products

1$$
2\sum_{i=1}^{n} x_i \quad \prod_{i=1}^{n} x_i \quad \int_{a}^{b} f(x) dx
3$$

$$ \sum_{i=1}^{n} x_i \quad \prod_{i=1}^{n} x_i \quad \int_{a}^{b} f(x) dx $$

Greek Letters

1$$
2\alpha \quad \beta \quad \gamma \quad \delta \quad \epsilon \quad \theta \quad \lambda \quad \mu \quad \pi \quad \sigma \quad \phi \quad \omega
3$$

$$ \alpha \quad \beta \quad \gamma \quad \delta \quad \epsilon \quad \theta \quad \lambda \quad \mu \quad \pi \quad \sigma \quad \phi \quad \omega $$

Capital Greek letters:

1$$
2\Alpha \quad \Beta \quad \Gamma \quad \Delta \quad \Theta \quad \Lambda \quad \Pi \quad \Sigma \quad \Phi \quad \Omega
3$$

$$ \Alpha \quad \Beta \quad \Gamma \quad \Delta \quad \Theta \quad \Lambda \quad \Pi \quad \Sigma \quad \Phi \quad \Omega $$

Operators and Relations

Comparison Operators

1$$
2< \quad > \quad \leq \quad \geq \quad \neq \quad \approx \quad \equiv
3$$

$$ < \quad > \quad \leq \quad \geq \quad \neq \quad \approx \quad \equiv $$

Set Operations

1$$
2\in \quad \notin \quad \subset \quad \subseteq \quad \cup \quad \cap \quad \setminus
3$$

$$ \in \quad \notin \quad \subset \quad \subseteq \quad \cup \quad \cap \quad \setminus $$

Logical Operators

1$$
2\land \quad \lor \quad \neg \quad \implies \quad \iff \quad \forall \quad \exists
3$$

$$ \land \quad \lor \quad \neg \quad \implies \quad \iff \quad \forall \quad \exists $$

Matrices and Vectors

Matrices

 1$$
 2\begin{pmatrix}
 3a & b \\\\
 4c & d
 5\end{pmatrix}
 6\quad
 7\begin{bmatrix}
 81 & 2 & 3 \\\\
 94 & 5 & 6 \\\\
107 & 8 & 9
11\end{bmatrix}
12$$

$$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} $$

More Matrix Examples

Determinant

1$$
2\det(\mathbf{A}) = \begin{vmatrix}
3a & b \\\\
4c & d
5\end{vmatrix} = ad - bc
6$$

$$ \det(\mathbf{A}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc $$

Matrix Types

1$$
2\begin{pmatrix} a & b \\\\ c & d \end{pmatrix} \quad
3\begin{bmatrix} a & b \\\\ c & d \end{bmatrix} \quad
4\begin{Bmatrix} a & b \\\\ c & d \end{Bmatrix} \quad
5\begin{vmatrix} a & b \\\\ c & d \end{vmatrix} \quad
6\begin{Vmatrix} a & b \\\\ c & d \end{Vmatrix}
7$$

$$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \begin{Bmatrix} a & b \\ c & d \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} a & b \\ c & d \end{Vmatrix} $$

Large Matrices

1$$
2\mathbf{A} = \begin{bmatrix}
3a_{11} & a_{12} & \cdots & a_{1n} \\\\
4a_{21} & a_{22} & \cdots & a_{2n} \\\\
5\vdots & \vdots & \ddots & \vdots \\\\
6a_{m1} & a_{m2} & \cdots & a_{mn}
7\end{bmatrix}
8$$

$$ \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} $$

Block Matrices

 1$$
 2\begin{bmatrix}
 3\mathbf{A} & \mathbf{B} \\\\
 4\mathbf{C} & \mathbf{D}
 5\end{bmatrix} = \begin{bmatrix}
 6a_{11} & a_{12} & b_{11} & b_{12} \\\\
 7a_{21} & a_{22} & b_{21} & b_{22} \\\\
 8c_{11} & c_{12} & d_{11} & d_{12} \\\\
 9c_{21} & c_{22} & d_{21} & d_{22}
10\end{bmatrix}
11$$

$$ \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_{11} & b_{12} \\ a_{21} & a_{22} & b_{21} & b_{22} \\ c_{11} & c_{12} & d_{11} & d_{12} \\ c_{21} & c_{22} & d_{21} & d_{22} \end{bmatrix} $$

Vectors

1$$
2\vec{v} = \begin{pmatrix} x \\\\ y \\\\ z \end{pmatrix} \quad \mathbf{v} = \begin{bmatrix} v_1 \\\\ v_2 \\\\ v_3 \end{bmatrix}
3$$

$$ \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} $$

Functions and Special Notation

Common Functions

1$$
2\sin(x) \quad \cos(x) \quad \tan(x) \quad \log(x) \quad \ln(x) \quad \exp(x)
3$$

$$ \sin(x) \quad \cos(x) \quad \tan(x) \quad \log(x) \quad \ln(x) \quad \exp(x) $$

Limits

1$$
2\lim_{x \to \infty} f(x) \quad \lim_{n \to 0} \frac{\sin(n)}{n} = 1
3$$

$$ \lim_{x \to \infty} f(x) \quad \lim_{n \to 0} \frac{\sin(n)}{n} = 1 $$

Derivatives

1$$
2\frac{d}{dx}f(x) \quad f'(x) \quad \frac{\partial f}{\partial x} \quad \nabla f
3$$

$$ \frac{d}{dx}f(x) \quad f'(x) \quad \frac{\partial f}{\partial x} \quad \nabla f $$

Aligned Equations

Single Alignment

1$$
2\begin{aligned}
3x &= a + b \\\\
4y &= c + d \\\\
5z &= x + y
6\end{aligned}
7$$

$$ \begin{aligned} x &= a + b \\ y &= c + d \\ z &= x + y \end{aligned} $$

Multi-line Equations

1$$
2\begin{align}
3f(x) &= x^2 + 2x + 1 \\\\
4     &= (x + 1)^2 \\\\
5     &= x^2 + 2x + 1
6\end{align}
7$$

$$ \begin{align} f(x) &= x^2 + 2x + 1 \\ &= (x + 1)^2 \\ &= x^2 + 2x + 1 \end{align} $$

Cases and Piecewise Functions

Basic Cases

1$$
2f(x) = \begin{cases}
3x^2 & \text{if } x \geq 0 \\\\
4-x^2 & \text{if } x < 0
5\end{cases}
6$$

$$ f(x) = \begin{cases} x^2 & \text{if } x \geq 0 \\ -x^2 & \text{if } x < 0 \end{cases} $$

Conditional Expressions

1$$
2a = \begin{cases}
32 & \text{if } b = 2 \\\\
44 & \text{if } b = 4 \\\\
56 & \text{if } b = 6 \\\\
60 & \text{otherwise}
7\end{cases}
8$$

$$ a = \begin{cases} 2 & \text{if } b = 2 \\ 4 & \text{if } b = 4 \\ 6 & \text{if } b = 6 \\ 0 & \text{otherwise} \end{cases} $$

Multiple Conditions

1$$
2f(x) = \begin{cases}
3x + 1 & \text{if } x < 0 \\\\
4x^2 & \text{if } 0 \leq x < 1 \\\\
52x - 1 & \text{if } x \geq 1
6\end{cases}
7$$

$$ f(x) = \begin{cases} x + 1 & \text{if } x < 0 \\ x^2 & \text{if } 0 \leq x < 1 \\ 2x - 1 & \text{if } x \geq 1 \end{cases} $$

Conditional Matrix

1$$
2\mathbf{A} = \begin{cases}
3\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \end{bmatrix} & \text{if } \det(\mathbf{B}) \neq 0 \\\\
4\begin{bmatrix} 0 & 0 \\\\ 0 & 0 \end{bmatrix} & \text{otherwise}
5\end{cases}
6$$

$$ \mathbf{A} = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \text{if } \det(\mathbf{B}) \neq 0 \\ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \text{otherwise} \end{cases} $$

Conditional with Logical Operators

1$$
2y = \begin{cases}
3x^2 & \text{if } x > 0 \text{ and } x \neq 1 \\\\
4\log(x) & \text{if } x > 0 \text{ and } x = 1 \\\\
50 & \text{if } x \leq 0
6\end{cases}
7$$

$$ y = \begin{cases} x^2 & \text{if } x > 0 \text{ and } x \neq 1 \\ \log(x) & \text{if } x > 0 \text{ and } x = 1 \\ 0 & \text{if } x \leq 0 \end{cases} $$

Spacing and Formatting

Manual Spacing

1$$
2a\,b \quad a\;b \quad a\:b \quad a\!b \quad a\ b \quad a\quad b \quad a\qquad b
3$$

$$ a,b \quad a;b \quad a:b \quad a!b \quad a\ b \quad a\quad b \quad a\qquad b $$

Text in Math

1$$
2\text{for all } x \in \mathbb{R} \quad \text{where } n > 0
3$$

$$ \text{for all } x \in \mathbb{R} \quad \text{where } n > 0 $$

Number Sets

1$$
2\mathbb{N} \quad \mathbb{Z} \quad \mathbb{Q} \quad \mathbb{R} \quad \mathbb{C}
3$$

$$ \mathbb{N} \quad \mathbb{Z} \quad \mathbb{Q} \quad \mathbb{R} \quad \mathbb{C} $$

Practical Examples

Example 1: Quadratic Formula

1$$
2x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
3$$

$$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$

Example 2: Euler's Identity

1$$
2e^{i\pi} + 1 = 0
3$$

$$ e^{i\pi} + 1 = 0 $$

Example 3: Bayes' Theorem

1$$
2P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}
3$$

$$ P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} $$

Example 4: Matrix Multiplication

 1$$
 2\mathbf{C} = \mathbf{A} \mathbf{B} = \begin{bmatrix}
 3a_{11} & a_{12} \\\\
 4a_{21} & a_{22}
 5\end{bmatrix}
 6\begin{bmatrix}
 7b_{11} & b_{12} \\\\
 8b_{21} & b_{22}
 9\end{bmatrix}
10$$

$$ \mathbf{C} = \mathbf{A} \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} $$

Example 5: Gradient Descent Update

1$$
2\theta_{t+1} = \theta_t - \alpha \nabla_\theta J(\theta_t)
3$$

$$ \theta_{t+1} = \theta_t - \alpha \nabla_\theta J(\theta_t) $$

Example 6: Neural Network Forward Pass

 1$$
 2\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})
 3$$
 4$$
 5
 6where $\sigma$ is the activation function, $\mathbf{W}$ is the weight matrix, $\mathbf{x}$ is the input vector, and $\mathbf{b}$ is the bias vector.
 7
 8### Example 7: Loss Function
 9
10```markdown
11$$
12\mathcal{L} = -\frac{1}{N}\sum_{i=1}^{N} \left[ y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i) \right]
13$$

$$ \mathcal{L} = -\frac{1}{N}\sum_{i=1}^{N} \left[ y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i) \right] $$

Tips and Best Practices

1. Use Display Math for Important Equations

Display math (double $$) is better for:

  • Standalone equations
  • Multi-line expressions
  • Complex formulas

Inline math (single $) is better for:

  • Short expressions in text
  • Variables mentioned in sentences
  • Simple formulas

2. Escape Special Characters

In markdown, you may need to escape:

  • $\$ (if not used for math)
  • _\_ (in non-math contexts)
  • *\* (in non-math contexts)

3. Use Aligned Environments for Multi-line

1$$
2\begin{aligned}
3f(x) &= x^2 + 2x + 1 \\\\
4     &= (x+1)^2
5\end{aligned}
6$$

Better than:

1$$
2f(x) = x^2 + 2x + 1 = (x+1)^2
3$$

4. Label Important Equations

While KaTeX doesn't support \label like LaTeX, you can add text labels:

1$$
2\text{(1)} \quad E = mc^2
3$$

5. Use Text Mode for Words

Always use \text{} for words in math mode:

1$$
2\text{for } x \in \mathbb{R} \text{ and } y > 0
3$$

Not:

1$$
2for x \in \mathbb{R} and y > 0  \quad \text{(incorrect)}
3$$

Common Mistakes to Avoid

Mistake 1: Mixing Math and Text

Wrong:

1The value is $x$ where $x > 0$ and positive.

Correct:

1The value is $x$ where $x > 0$ and is positive.

Mistake 2: Forgetting Curly Braces

Wrong:

1$x^10$  (renders as $x^10$)

Correct:

1$x^{10}$  (renders as $x^{10}$)

Mistake 3: Incorrect Spacing

Wrong:

1$f(x)=x^2+1$  (no spacing)

Correct:

1$f(x) = x^2 + 1$  (proper spacing)

Advanced Examples

Example: Fourier Transform

1$$
2F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt
3$$

$$ F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt $$

Example: Schrödinger Equation

1$$
2i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)
3$$

$$ i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t) $$

Example: Einstein Field Equations

1$$
2R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}
3$$

$$ R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu} $$

Resources

Gotchas/Warnings

  • ⚠️ Dollar Signs: In markdown, $ starts math mode - escape with \$ if needed
  • ⚠️ Curly Braces: Always use {} for multi-character subscripts/superscripts
  • ⚠️ Text Mode: Use \text{} for words, not raw text in math mode
  • ⚠️ Spacing: Math mode removes spaces - use \,, \;, \quad, etc. for spacing
  • ⚠️ Alignment: Use aligned or align environments for multi-line equations
  • ⚠️ Backslashes: In markdown, you may need \\ for line breaks in matrices

Related Snippets