Four-Wheel Independent Drive Kinematics
Forward and inverse kinematics for four-wheel independent drive robots with individual motor control.
Overview
Four-Wheel Independent Drive uses four independently driven wheels, providing high maneuverability and redundancy.
Advantages:
- High traction and power
- Redundancy (can operate with one wheel failure)
- Good for rough terrain
- Simple mechanical design
Disadvantages:
- Cannot move sideways (nonholonomic)
- Wheel coordination required
- Potential for wheel slip/skidding
Robot Configuration
1 Front
2 β
3 1 βββββββ 2
4 β β’ β β Center of rotation
5 β β
6 4 βββββββ 3
7
8 Wheels: 1=FL, 2=FR, 3=RR, 4=RL
Parameters:
- $L$: Wheelbase (front-back distance)
- $W$: Track width (left-right distance)
- $r$: Wheel radius
- $(x, y, \theta)$: Robot pose
Interactive Four-Wheel Drive Simulator
Forward Kinematics
Simplified Model (Ackermann Approximation)
For four-wheel drive, we can approximate using average left and right velocities:
$$ v = \frac{r(\omega_R + \omega_L)}{2} $$
$$ \omega = \frac{r(\omega_R - \omega_L)}{W} $$
Where:
- $\omega_L = \frac{\omega_1 + \omega_4}{2}$ (average left wheels)
- $\omega_R = \frac{\omega_2 + \omega_3}{2}$ (average right wheels)
Python Implementation
1import numpy as np
2
3class FourWheelDrive:
4 def __init__(self, wheelbase=0.5, track_width=0.4, wheel_radius=0.1):
5 """
6 Args:
7 wheelbase: Distance between front and rear axles (m)
8 track_width: Distance between left and right wheels (m)
9 wheel_radius: Radius of wheels (m)
10 """
11 self.L = wheelbase
12 self.W = track_width
13 self.r = wheel_radius
14
15 # State: [x, y, theta]
16 self.state = np.array([0.0, 0.0, 0.0])
17
18 def forward_kinematics(self, omega1, omega2, omega3, omega4, dt):
19 """
20 Update robot pose from wheel velocities
21
22 Args:
23 omega1, omega2, omega3, omega4: Wheel angular velocities (rad/s)
24 1=FL, 2=FR, 3=RR, 4=RL
25 dt: Time step (s)
26
27 Returns:
28 Updated pose [x, y, theta]
29 """
30 x, y, theta = self.state
31
32 # Average left and right velocities
33 omega_left = (omega1 + omega4) / 2
34 omega_right = (omega2 + omega3) / 2
35
36 # Robot velocities
37 v = self.r * (omega_right + omega_left) / 2
38 omega = self.r * (omega_right - omega_left) / self.W
39
40 # Update pose
41 if abs(omega) < 1e-6:
42 # Straight line motion
43 x += v * np.cos(theta) * dt
44 y += v * np.sin(theta) * dt
45 else:
46 # Arc motion
47 R = v / omega
48 x += R * (np.sin(theta + omega * dt) - np.sin(theta))
49 y += R * (-np.cos(theta + omega * dt) + np.cos(theta))
50 theta += omega * dt
51
52 # Normalize angle
53 theta = np.arctan2(np.sin(theta), np.cos(theta))
54
55 self.state = np.array([x, y, theta])
56 return self.state.copy()
57
58 def get_velocity(self, omega1, omega2, omega3, omega4):
59 """Get robot linear and angular velocity"""
60 omega_left = (omega1 + omega4) / 2
61 omega_right = (omega2 + omega3) / 2
62
63 v = self.r * (omega_right + omega_left) / 2
64 omega = self.r * (omega_right - omega_left) / self.W
65
66 return v, omega
67
68# Example
69robot = FourWheelDrive(wheelbase=0.5, track_width=0.4, wheel_radius=0.1)
70
71# All wheels same speed β straight line
72for _ in range(100):
73 robot.forward_kinematics(5.0, 5.0, 5.0, 5.0, dt=0.01)
74
75print(f"After straight motion: {robot.state}")
Inverse Kinematics
From Robot Velocity to Wheel Velocities
Given desired $v$ and $\omega$:
$$ \omega_L = \frac{v - \omega W/2}{r} $$
$$ \omega_R = \frac{v + \omega W/2}{r} $$
Then distribute to individual wheels:
- $\omega_1 = \omega_4 = \omega_L$ (left wheels)
- $\omega_2 = \omega_3 = \omega_R$ (right wheels)
Implementation
1def inverse_kinematics(self, v_desired, omega_desired):
2 """
3 Compute wheel velocities for desired motion
4
5 Args:
6 v_desired: Desired linear velocity (m/s)
7 omega_desired: Desired angular velocity (rad/s)
8
9 Returns:
10 (omega1, omega2, omega3, omega4) wheel velocities
11 """
12 omega_left = (v_desired - omega_desired * self.W / 2) / self.r
13 omega_right = (v_desired + omega_desired * self.W / 2) / self.r
14
15 # Distribute to all four wheels
16 omega1 = omega_left # FL
17 omega2 = omega_right # FR
18 omega3 = omega_right # RR
19 omega4 = omega_left # RL
20
21 return omega1, omega2, omega3, omega4
22
23# Add to FourWheelDrive class
24FourWheelDrive.inverse_kinematics = inverse_kinematics
25
26# Example: Move forward at 0.5 m/s
27robot = FourWheelDrive()
28w1, w2, w3, w4 = robot.inverse_kinematics(v_desired=0.5, omega_desired=0)
29print(f"Straight: Οβ={w1:.2f}, Οβ={w2:.2f}, Οβ={w3:.2f}, Οβ={w4:.2f}")
30
31# Turn in place
32w1, w2, w3, w4 = robot.inverse_kinematics(v_desired=0, omega_desired=1.0)
33print(f"Rotation: Οβ={w1:.2f}, Οβ={w2:.2f}, Οβ={w3:.2f}, Οβ={w4:.2f}")
Wheel Slip Considerations
Slip Detection
1def check_wheel_slip(self, omega1, omega2, omega3, omega4, threshold=2.0):
2 """
3 Check for potential wheel slip
4
5 Returns:
6 (has_slip, slip_info)
7 """
8 # Check front wheels
9 front_diff = abs(omega1 - omega2)
10
11 # Check rear wheels
12 rear_diff = abs(omega4 - omega3)
13
14 # Check left wheels
15 left_diff = abs(omega1 - omega4)
16
17 # Check right wheels
18 right_diff = abs(omega2 - omega3)
19
20 slip_info = {
21 'front_diff': front_diff,
22 'rear_diff': rear_diff,
23 'left_diff': left_diff,
24 'right_diff': right_diff
25 }
26
27 has_slip = (front_diff > threshold or rear_diff > threshold or
28 left_diff > threshold or right_diff > threshold)
29
30 return has_slip, slip_info
31
32# Add to class
33FourWheelDrive.check_wheel_slip = check_wheel_slip
Advantages Over Two-Wheel Drive
- Higher Traction: Four contact points with ground
- Better Climbing: More power for obstacles
- Redundancy: Can operate with one wheel failure
- Stability: Better weight distribution
Practical Considerations
1. Wheel Synchronization
1def synchronized_control(self, v_desired, omega_desired, max_accel=1.0, dt=0.01):
2 """
3 Smooth wheel velocity changes to prevent slip
4
5 Args:
6 max_accel: Maximum acceleration (rad/sΒ²)
7 """
8 target_w1, target_w2, target_w3, target_w4 = self.inverse_kinematics(
9 v_desired, omega_desired
10 )
11
12 # Gradually adjust to target (simple rate limiting)
13 # In practice, use PID controllers for each wheel
14
15 return target_w1, target_w2, target_w3, target_w4
2. Terrain Adaptation
1def terrain_adaptive_control(self, terrain_type='flat'):
2 """
3 Adjust control parameters based on terrain
4
5 Args:
6 terrain_type: 'flat', 'rough', 'slippery', 'incline'
7 """
8 if terrain_type == 'rough':
9 # Increase individual wheel control
10 return {'independent': True, 'slip_threshold': 3.0}
11 elif terrain_type == 'slippery':
12 # Reduce acceleration, increase monitoring
13 return {'max_accel': 0.5, 'slip_threshold': 1.0}
14 elif terrain_type == 'incline':
15 # Increase rear wheel power
16 return {'rear_bias': 1.2}
17 else:
18 return {'independent': False, 'slip_threshold': 2.0}
Applications
- Off-road robots: High traction for rough terrain
- Heavy-duty platforms: Carrying large payloads
- Mars rovers: Redundancy and reliability
- Agricultural robots: Uneven terrain navigation
- Construction robots: High power requirements
Further Reading
Related Snippets
- Denavit-Hartenberg (DH) Parameters
Denavit-Hartenberg convention for systematically describing robot manipulator β¦ - DH Parameter Examples and Common Configurations
Practical examples of DH parameter configurations for common robot manipulators β¦ - Front-Wheel Drive (FWD) Kinematics
Forward and inverse kinematics for front-wheel drive robots with Ackermann β¦ - Jacobian Matrices for Forward and Inverse Kinematics
Jacobian matrices relate joint velocities to end-effector velocities, essential β¦ - Mecanum Wheel Kinematics
Forward and inverse kinematics for mecanum wheel robots, enabling β¦ - Rear-Wheel Drive (RWD) Kinematics
Forward and inverse kinematics for rear-wheel drive robots with front-wheel β¦ - Two-Wheel Balancing Robot Kinematics and Control
Kinematics and control for two-wheel self-balancing robots (inverted pendulum on β¦ - Two-Wheel Differential Drive Robot Kinematics
Forward and inverse kinematics for two-wheel differential drive robots, the most β¦