Schrödinger Equation
Time-Dependent
$$ i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle $$
Time-Independent
For stationary states:
$$ \hat{H}|\psi\rangle = E|\psi\rangle $$
1D Position Space
$$ -\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi $$
Python (Numerical Solution)
1import numpy as np
2from scipy.integrate import odeint
3
4def schrodinger_1d(psi, x, E, V, m=1, hbar=1):
5 """Solve 1D time-independent Schrödinger equation"""
6 psi_real, psi_imag = psi
7 dpsi_real = psi_imag
8 dpsi_imag = (2*m/hbar**2) * (V - E) * psi_real
9 return [dpsi_real, dpsi_imag]
Further Reading
Related Snippets
- Path Integral Formulation
Feynman's path integral approach to quantum mechanics - Quantum Computing Basics
Qubits, gates, and quantum algorithms - Quantum Mechanics Basics
Wave functions, operators, and measurements - Quantum Operators
Position, momentum, and Hamiltonian operators