Laplace Transform

Analyze LTI systems in the s-domain.

Definition

$$ X(s) = \mathcal{L}{x(t)} = \int_0^{\infty} x(t) e^{-st} dt $$

Where $s = \sigma + j\omega$ is a complex frequency.

Common Transforms

$x(t)$$X(s)$ROC
$\delta(t)$$1$All $s$
$u(t)$$\frac{1}{s}$$\text{Re}(s) > 0$
$e^{-at}u(t)$$\frac{1}{s+a}$$\text{Re}(s) > -a$
$t^n u(t)$$\frac{n!}{s^{n+1}}$$\text{Re}(s) > 0$
$\sin(\omega t)u(t)$$\frac{\omega}{s^2 + \omega^2}$$\text{Re}(s) > 0$
$\cos(\omega t)u(t)$$\frac{s}{s^2 + \omega^2}$$\text{Re}(s) > 0$

Transfer Function

$$ H(s) = \frac{Y(s)}{X(s)} $$

Properties

  • Linearity: $\mathcal{L}{ax_1 + bx_2} = aX_1(s) + bX_2(s)$
  • Time shift: $\mathcal{L}{x(t-t_0)u(t-t_0)} = e^{-st_0}X(s)$
  • Differentiation: $\mathcal{L}{\frac{dx}{dt}} = sX(s) - x(0^-)$
  • Integration: $\mathcal{L}{\int_0^t x(\tau)d\tau} = \frac{X(s)}{s}$

Python (Symbolic)

 1from scipy import signal
 2import numpy as np
 3
 4# Define transfer function H(s) = 1/(s^2 + 2s + 1)
 5num = [1]
 6den = [1, 2, 1]
 7sys = signal.TransferFunction(num, den)
 8
 9# Frequency response
10w, H = signal.freqs(num, den)
11
12# Step response
13t, y = signal.step(sys)
14
15# Impulse response
16t, y = signal.impulse(sys)

Further Reading

Related Snippets