Common Probability Distributions
Visual guide to common probability distributions with their properties and use cases.
Normal (Gaussian) Distribution
Symmetric bell curve - most common distribution in nature.
$$ f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$
- Mean: $\mu$
- Variance: $\sigma^2$
- Symmetric around mean
- 68-95-99.7 rule (1σ, 2σ, 3σ)
1from scipy import stats
2import numpy as np
3
4# Generate samples
5samples = np.random.normal(mu=0, sigma=1, size=1000)
6
7# PDF
8x = np.linspace(-4, 4, 100)
9pdf = stats.norm.pdf(x, loc=0, scale=1)
10
11# CDF
12cdf = stats.norm.cdf(x, loc=0, scale=1)
Binomial Distribution
Discrete - number of successes in $n$ independent trials.
$$ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} $$
- Parameters: $n$ (trials), $p$ (success probability)
- Mean: $np$
- Variance: $np(1-p)$
1# Binomial: n=10 trials, p=0.5 success probability
2samples = np.random.binomial(n=10, p=0.5, size=1000)
Poisson Distribution
Discrete - number of events in fixed interval (rare events).
$$ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} $$
- Parameter: $\lambda$ (average rate)
- Mean: $\lambda$
- Variance: $\lambda$
- Models: arrivals, defects, calls per hour
1# Poisson: lambda=3 average events
2samples = np.random.poisson(lam=3, size=1000)
Exponential Distribution
Continuous - time between events (memoryless property).
$$ f(x) = \lambda e^{-\lambda x}, \quad x \geq 0 $$
- Parameter: $\lambda$ (rate)
- Mean: $1/\lambda$
- Variance: $1/\lambda^2$
- Memoryless: $P(X > s+t | X > s) = P(X > t)$
1# Exponential: lambda=0.5
2samples = np.random.exponential(scale=1/0.5, size=1000)
Gamma Distribution
Continuous - sum of exponential random variables, waiting time for $k$ events.
$$ f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x \geq 0 $$
- Parameters: $\alpha$ (shape), $\beta$ (rate)
- Mean: $\alpha/\beta$
- Variance: $\alpha/\beta^2$
- Special case: $\alpha=1$ gives Exponential
1from scipy import stats
2
3# Gamma distribution
4alpha, beta = 2, 1
5samples = np.random.gamma(alpha, 1/beta, size=1000)
6
7# Or using scipy
8x = np.linspace(0, 10, 100)
9pdf = stats.gamma.pdf(x, a=alpha, scale=1/beta)
Pareto Distribution
Heavy-tailed - power law distribution (80/20 rule, wealth distribution).
$$ f(x) = \frac{\alpha x_m^\alpha}{x^{\alpha+1}}, \quad x \geq x_m $$
- Parameters: $\alpha$ (shape), $x_m$ (scale/minimum)
- Mean: $\frac{\alpha x_m}{\alpha - 1}$ for $\alpha > 1$
- Heavy tail: $P(X > x) \propto x^{-\alpha}$
Note: Heavy tail means rare extreme events are more likely than in normal distribution.
1from scipy import stats
2
3# Pareto distribution
4alpha, xm = 2, 1
5samples = (np.random.pareto(alpha, size=1000) + 1) * xm
6
7# Or using scipy
8x = np.linspace(xm, 10, 100)
9pdf = stats.pareto.pdf(x, alpha, scale=xm)
Skewed Distributions
Log-Normal Distribution
Right-skewed - exponential of normal distribution.
$$ f(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, \quad x > 0 $$
1# Log-normal distribution
2mu, sigma = 0, 1
3samples = np.random.lognormal(mu, sigma, size=1000)
Distribution Comparison
| Distribution | Type | Parameters | Mean | Use Case |
|---|---|---|---|---|
| Normal | Continuous | $\mu, \sigma$ | $\mu$ | Natural phenomena, errors |
| Binomial | Discrete | $n, p$ | $np$ | Success/failure trials |
| Poisson | Discrete | $\lambda$ | $\lambda$ | Rare events, arrivals |
| Exponential | Continuous | $\lambda$ | $1/\lambda$ | Time between events |
| Gamma | Continuous | $\alpha, \beta$ | $\alpha/\beta$ | Waiting times |
| Pareto | Continuous | $\alpha, x_m$ | $\frac{\alpha x_m}{\alpha-1}$ | Power laws, wealth |
| Log-Normal | Continuous | $\mu, \sigma$ | $e^{\mu + \sigma^2/2}$ | Multiplicative processes |
Further Reading
Related Snippets
- Bayes' Theorem & Applications
Bayesian inference and practical applications - Central Limit Theorem
Foundation of statistical inference - Monte Carlo Methods
Simulation and numerical integration - Null Hypothesis Testing
Understanding null hypothesis and hypothesis testing - P-Values Explained
Understanding p-values and statistical significance - Percentiles and Quantiles
Understanding percentiles, quartiles, and quantiles - Probability Basics
Fundamental probability concepts and rules - Random Variables
Expected value, variance, and moments - Statistical Moments
Mean, variance, skewness, and kurtosis explained